
exascaleproject.org

Introduction to MPI-I/O

ATPESC 2020

Rob Latham
Math and Computer Science Division

Argonne National Laboratory

July 31, 2020

2

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Plan of attack

• Bottom-up tour of I/O interfaces

– POSIX routines called by MPI-IO implementations

– Parallel-NetCDF routines build on top of MPI-IO

• Simple toy programs

– Refining example several times throughout session

– You can apply these lessons to your own code

• Heads up: going to do things the "hard way",
then show "easier way"

• Demonstrating some tools for understanding
what’s going on

POSIX

MPI-IO

PNETCDF HDF5
D
A
R
S
H
A
N

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

3

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Hands on materials

• Code for this …

– Simple array I/O

• … and other sections available on our gitlab site:

– Game of Life I/O

– Darshan

– HDF5

– https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

• I’m going to give you a few minutes to try each hands-on. Encourage you to
work through examples when you can

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

4

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Operating on Arrays

• Arrays show up in many scientific
applications

– Matrix operations

– Particle maps

– Regions of space

– Time series

– Images

• Probably your real application more
complicated but an array or two (or more) is
in there somewhere, I’d wager.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

5

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Decomposition

• How do we physically access locally
parts of a logically larger distributed
array in parallel…

– Piecewise?

– Chunks?

– Rows?

• Largely dictated by application
algorithm needs

– E.g. volume rendering math requires
chunks not rows.

• Choice impacts memory and I/O
performance

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

6

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Supporting Checkpoint/Restart

• For long-running applications, the cautious user checkpoints

• Application-level checkpoint involves the application saving its own state

– With a bit of extra effort, can be portable

• A canonical representation is preferred

– Independent of number of processes

• Restarting is then possible

– Canonical representation aids restarting with a different number of processes

• Also eases data analysis (when using same output)

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

7

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Defining a Checkpoint

• Need enough to restart

– Header information

• Size of problem (e.g. matrix dimensions)

• Description of environment (e.g. input parameters)

– Program state

• Should represent the global (canonical) view of the data

• Ideally stored in a convenient container

– Single “thing” (file, object, keyval store...)

• If all processes checkpoint at once, naturally a parallel, collective operation

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

8

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

HANDS-ON 1: simple data descriptions

• Consider an application that operates on a 2-d array of integers.

1. Write code declaring a 2-d array of integers

• Probably want to allocate on heap, not stack

• Later steps will be easier if you make it a single allocation

2. Define a data structure describing the experiment

• E.g. C struct with row, column, iteration

• Use whatever language you like…

– … but Phil and I can only be helpful if you use C

• Source “theta-setup-env.sh” or "ascent-setup-env.sh" to load necessary
modules

• Could run this first example on laptop if you want: shouldn’t require any libraries

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

9

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

HANDS-ON 1 solutions

typedef struct {

int row;

int col;

int iter;

} science;

int *array;

array = malloc(XDIM*YDIM*sizeof(*array));

C struct holding metadata

Do this: index into a single big allocation

Don’t do this: N allocations will be slower and harder to describe

/* not MPI-friendly: describing this memory region will require

* a more complicated data type description */

int **annoying;

annoying = malloc(YDIM*sizeof(*array));

for (int i=0; i<YDIM; i++)

annoying[i] = malloc(XDIM*sizeof(*array));

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

10

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

POSIX I/O

• POSIX is the IEEE Portable Operating System Interface for Computing

Environments

• “POSIX defines a standard way for an application program to obtain basic

services from the operating system”

– Mechanism almost all serial applications use to perform I/O

• POSIX was created when a single computer owned its own file system

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

11

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Deficiencies in serial interfaces

• Typical (serial) I/O calls seen in applications

• No notion of other processors

• Primitive (if any) data description methods

• Tuning limited to open flags

• No mechanism for data portability

– Fortran not even portable between compilers

POSIX:

fd = open(“some_file”, O_WRONLY|O_CREAT,
S_IRUSR|S_IWUSR);
ret = write(fd, w_data, nbytes);
ret = lseek(fd, 0, SEEK_SET);
ret = read(fd, r_data, nbytes);
ret = close(fd);

FORTRAN:

OPEN(10, FILE=‘some_file’, &
STATUS=“replace”, &
ACCESS=“direct”, RECL=16);

WRITE(10, REC=2) 15324
CLOSE(10);

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

12

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

HANDS-ON 2: simple I/O

• We haven’t talked about MPI-IO or I/O libraries, but we can still checkpoint.

– Serial I/O, not parallel

• Implement “write_data”

– Will create file and fill in data

– Prototype:

• int write_data(char *filename)

– Use system calls (open(), write(), close()) , not “stdio” calls (fopen(), fwrite(),
fclose()): will map more closely to MPI-IO later

– How will you know it worked?

– We are going to repeatedly revise write_data() (and later read_data()) with each
exercise

• Software engineering: hide details

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

13

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

RUNNING

• Submit to the ‘R.ATPESC2020’ queue (theta) (no special queue on ascent)

• I’ve provided a ‘submit-theta.sh’ and 'submit-ascent.sh' shell script

– qsub –q R.ATPESC2020 submit-theta.sh <program> [filename]

• If you don’t give [filename], then ‘testfile’ used.

– bsub –K submit-ascent.sh <program> [filename]

• Which file system to use?

– Tried to make scripts do right thing by default

– Please don’t use the NFS-mounted home directory

– Given scripts should already point you to the right parallel directory

• Theta: /lus/theta-fs0/projects/ATPESC2020/data-and-io

• Ascent: /ccsopen/proj/gen139/data-and-io/

• Make a directory for your data

– mkdir -p /lus/theta-fs0/projects/ATPESC2020/data-and-io/$USER

– Or mkdir –p /ccsopen/proj/gen139/data-and-io/$USER

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

14

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Solution fragments:

int write_data(char *filename)

{

science data = {

.row = YDIM,

.col = XDIM,

.iter = 1

};

int *array;

int fd;

int ret=0;

array = buffer_create(0, XDIM, YDIM);

fd = open(filename, O_CREAT|O_WRONLY,

S_IRUSR|S_IWUSR);

ret = write(fd, &data, sizeof(data));

ret = write(fd, array, XDIM*YDIM*sizeof(int));

ret = close(fd);

return ret;

}

% od -td testfile
0000000 1 5 1 0
0000020 1 2 3 4
0000040

Reading a binary file: “cat” won’t work.
Could write a c program to read. Several
utilities available. I like ‘od’: (historically it
only did an “octal dump”). The (t)ype
argument can select (d)ecimal

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

15

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

HANDS-ON 3: send-to-master

• Parallel program, but serial I/O

1. Write_data() should take an MPI
Communicator

2. Call MPI_Init() and MPI_Finalize()

3. Use MPI_Gather to collect all data onto rank 0:

• Only rank 0 does I/O; writes header and all
array information

• What’s good about send-to-master? What’s
bad?

0 1 2 3 4

File

5

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

Hdr

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

16

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Solution fragments: MPI_Gather, write larger data from rank 0

MPI_Comm_rank(comm, &rank);

MPI_Comm_size(comm, &nprocs);

/* every process creates its own buffer */

array = buffer_create(rank, XDIM, YDIM);

/* and then sends it to rank 0 */

int *buffer =

malloc(XDIM*YDIM*nprocs*sizeof(int));

MPI_CHECK(MPI_Gather(

/* sender (buffer,count,type) tuple */

array, XDIM*YDIM, MPI_INT,

/* receiver tuple */

buffer, XDIM*YDIM, MPI_INT,

/* who gathers and across which context */

0, comm));

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

17

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Solution fragments: writing from rank 0

if (rank == 0) {

/* looks like serial with more data */

…

/* writing a global array, not just our

local piece of it */

data.row = YDIM*nprocs;

data.col = XDIM;

data.iter = 1;

ret = write(fd, &data, sizeof(data));

ret = write(fd, buffer,

XDIM*YDIM*nprocs*sizeof(int));

ret = close(fd);

return ret;

}

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

18

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Other questions:

• Lots of machines (your laptop; Theta) represent integers as 32 bit little
endian. What if you went back in time and ran this code on BlueGene

– Summit and ascent are powerpc64le

• We wrote row-wise. What if you wanted to write a column of data?

• What impact would a header have on data layout? Are there other options?

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

19

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

HANDS-ON 4: using Darshan

1. Find the darshan log for the last exercise

2. View the raw counters with “darshan-parser”

3. Generate a report

– You might have to transfer PDF locally to view

4. Find the darshan log for the exercise #2

– Hint: you can’t! – why not?

• Hint: https://www.alcf.anl.gov/user-guides/darshan

• ascent: look in /gpfs/wolf/darshan/ascent/2020/7/31

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://www.alcf.anl.gov/user-guides/darshan

20

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Parallel I/O and MPI

• The stdio checkpoint routine works but is not parallel

– One process is responsible for all I/O

– Wouldn’t want to use this approach for real

• How can we get the full benefit of a parallel file system?

– We first look at how parallel I/O works in MPI

– We then implement a fully parallel checkpoint routine

• MPI is a good setting for parallel I/O

– Writing is like sending and reading is like receiving

– Any parallel I/O system will need:

• collective operations

• user-defined datatypes to describe both memory and file layout

• communicators to separate application-level message passing from I/O-related message passing

• non-blocking operations

– i.e., lots of MPI-like machinery

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

21

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Collective I/O

• A critical optimization in parallel I/O

• All processes (in the communicator) must call the collective
I/O function

• Allows communication of “big picture” to file system

– Framework for I/O transformations/optimizations at the MPI-IO layer

– e.g., two-phase I/O

Small individual

requests
Large collective

access

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

22

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Simple MPI-IO

• Collective open: all processes in communicator

• File-side data layout with file views

• Memory-side data layout with MPI datatype passed to write
MPI_File_open(COMM, name, mode,

info, fh);
MPI_File_set_view(fh, disp, etype,

filetype, datarep, info);
MPI_File_write_all(fh, buf, count,

datatype, status);

MPI_File_open(COMM, name, mode,
info, fh);

MPI_File_set_view(fh, disp, etype,
filetype, datarep, info);

MPI_File_write_all(fh, buf, count,
datatype, status);

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

23

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Collective MPI I/O Functions

• Not going to go through the MPI-IO API in excruciating detail

– Happy to discuss in slack, chat, email

• MPI_File_write_at_all, etc.

– _all indicates that all processes in the group specified by the communicator passed to
MPI_File_open will call this function

– _at indicates that the position in the file is specified as part of the call; this provides thread-
safety and clearer code than using a separate “seek” call

• Each process specifies only its own access information

– the argument list is the same as for the non-collective functions

– OK to participate with zero data

• All processes must call a collective

• Process providing zero data might participate behind the scenes anyway

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

24

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

HANDS-ON 5: writing with MPI-IO

• Let’s take “I/O from master” example and make it parallel

• Use MPI_File_open instead of open

• Only one process needs to write header
– Independent MPI_File_write

• Every process sets a “file view”
– Need to skip over header – file view has an “offset” field just for this case

– The “file view” here is not complicated but we are operating on integers, not
bytes:

• MPI_File_set_view(fh, sizeof(header), MPI_INT, MPI_INT,
"native", info));

• Each process writes one slice/row of array
– MPI_File_write_at_all

– Offset “rank*XDIM*YDIM”

– “(bufer, count, datatype)” tuple: (values, XDIM*YDIM, MPI_INT)

xdim

y
d

im

ra
n

k
 0

 1
 2

 3
 4

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

25

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Solution fragments for Hands-On 5

if (rank == 0) {

MPI_CHECK(MPI_File_write(fh,

&header, sizeof(header), MPI_BYTE,

MPI_STATUS_IGNORE));

}

MPI_File_write_at_all(fh, rank*XDIM*YDIM,

values, XDIM*YDIM, MPI_INT,

MPI_STATUS_IGNORE));

Header I/O from rank 0:

Collective I/O from all ranks

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

26

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Hands-on 5 continued: Darshan

• A lot like #4: let’s use Darshan

– Find Darshan log file, but don’t generate report right away

• What do you think the report will say?

• OK, now generate the report. Were you surprised?

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

27

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Managing Concurrent Access

Files are treated like global shared memory regions. Locks are used to
manage concurrent access:

• Files are broken up into lock units
– Unit boundaries are dictated by the storage system, regardless of access pattern

• Clients obtain locks on units that they will access before I/O occurs

• Enables caching on clients as well (as long as client has a lock, it knows its
cached data is valid)

• Locks are reclaimed from clients when others desire access

If an access touches any data in a

lock unit, the lock for that region

must be obtained before access

occurs.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

28

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Implications of Locking in Concurrent Access

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

29

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

I/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

▪ Goals of transformations:
– Reduce number of operations to PFS

(avoiding latency)

– Avoid lock contention

(increasing level of concurrency)

– Hide number of clients

(more on this later)

▪ With “transparent” transformations,

data ends up in the same locations

in the file as it would have been

normally
– i.e., the file system is still aware of the

actual data organization

When we think about I/O transformations,
we consider the mapping of data between
application processes and locations in file.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

30

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

I/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

▪ We will tour through a few examples

of data transformations in the

following slides

▪ The important thing to remember is

that software already exists to do

these things for you in HDF5,

PnetCDF, ADIOS, and MPI-IO

▪ If you find yourself replicating these

optimizations by hand, look around

to see if you can find an off-the-shelf

solution

When we think about I/O transformations,
we consider the mapping of data between
application processes and locations in file.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

31

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Reducing Number of Operations

Because most operations go over multiple networks, I/O to a PFS incurs more
latency than with a local FS. Data sieving is a technique to address I/O latency by
combining operations:

• When reading, application process reads a large region holding all needed data and
pulls out what is needed

• When writing, three steps required (below)

• Somewhat counter-intuitive: do extra I/O to avoid contention

Step 1: Data in region to be modified

are read into intermediate buffer (1

read).

Step 2: Elements to be written to file

are replaced in intermediate buffer.

Step 3: Entire region is written back to

storage with a single write operation.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

32

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Avoiding Lock Contention

We can reorder data among processes to avoid lock contention. Two-
phase I/O splits I/O into a data reorganization phase and an interaction with the
storage system (two-phase write depicted):

• Data exchanged between processes to match file layout

• 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between processes based

on organization of data in file.

Phase 2: Data are written to file (storage servers) with

large writes, no contention.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

33

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Two-Phase I/O Algorithms
(or, You don’t want to do this yourself…)

For more information, see W.K. Liao and A. Choudhary, “Dynamically

Adapting File Domain Partitioning Methods for Collective

I/O Based on Underlying Parallel File System Locking Protocols,” SC2008,

November, 2008.

Today’s systems also
choose aggregators
that are “best” for
storage

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

34

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

S3D Turbulent Combustion Code

• S3D is a turbulent combustion application using a

direct numerical simulation solver from Sandia

National Laboratory

• Checkpoints consist of four global arrays

– 2 3-dimensional

– 2 4-dimensional

– 50x50x50 fixed

subarrays

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and

Wei-Keng Liao (NWU) for providing the S3D I/O

benchmark, Wei-Keng Liao for providing this diagram,

C. Wang, H. Yu, and K.-L. Ma of UC Davis for image.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

35

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Impact of Transformations on S3D I/O

• Testing with PnetCDF output to single file, three configurations, 16 processes

– All MPI-IO optimizations (collective buffering and data sieving) disabled

– Independent I/O optimization (data sieving) enabled

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled

Coll. Buffering and

Data Sieving Disabled

Data Sieving Enabled Coll. Buffering

Enabled (including

Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time per

proc (sec)

1426.47 4.82 0.60

Application did the same
thing in every case

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

36

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

HANDS-ON 6: reading with MPI-IO

• Slightly different: all processes read one row

– For simplicity, same row

• File view will be more complicated, use MPI “Subarray”
datatype

• In C, array access is described in “row-major”
– array_size[0] = 5; array_size[1] = 4;

• File view uses derived ‘subarray’, not built-in MPI_INT

• Location in file given with subarray type; no offset in
MPI_File_read_all
– Still provide a “buffer, count, datatype” tuple for memory layout

4

5

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

37

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Solution fragments

/* In C-order the arrays are row-major:

*

* |-----|

* |-----|

* |-----|

*

* The 'sizes' of the above array would be 3,5

* The last column would be a "subsize" of 3,1

* And a "start" of 0,5 */

sizes[0] = nprocs; sizes[1] = XDIM;

sub[0] = nprocs; sub[1] = 1;

starts[0] = 0; starts[1] = XDIM/2;

MPI_Type_create_subarray(NDIMS,

sizes, sub, starts,

MPI_ORDER_C, MPI_INT, &subarray);

MPI_Type_commit(&subarray);

MPI_CHECK(MPI_File_set_view(fh, sizeof(header),

MPI_INT, subarray, "native", info));

MPI_Type_free(&subarray);

MPI_CHECK(MPI_File_read_all(fh,

read_buf, nprocs, MPI_INT, MPI_STATUS_IGNORE);

Type creation File view and read

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

38

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Hands on 6 continued: Darshan

• How does this workload differ from the write?

• Change the ‘read_all’ to an independent ‘read’

– What do you think the Darshan output will say? Find out.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

39

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

GPFS Access three ways

• POSIX shared vs MPI-IO collective

– Locking overhead for unaligned writes hits POSIX hard

• Default MPI-IO parameters not ideal

– Reported to IBM; simple tuning brings MPI-IO back to parity

– “Vendor Defaults” might give you bad first impression

• File per process (fpp) extremely seductive, but entirely untenable on current generation.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

40

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Performance portability in I/O:

• Let's look more closely at file-system
specific optmizations

• Simple ior benchmark on theta vs
ascent (baby summit)

– 1 000 000 bytes per process, 48
processes

– Collective I/O forced on ascent

• Darshan confirms identical MPI-IO
workload

• Different tranformations for different
file systems

– OST-oriented vs file block

Darshan Counter Theta

(Lustre)

Ascent

(GPFS)

MPIIO_ACCESS1_ACCESS 1 000 000 1 000 000

POSIX_WRITES 46 3

POSIX_BYTES_WRITTEN 48000000 48000000

POSIX_SIZE_WRITE_100K_1M 46 0

POSIX_SIZE_WRITE_10M_100M 0 3

POSIX_FILE_ALIGNMENT 1048576 -1(*)

POSIX_SLOWEST_RANK_BYTES 2097152 96000000

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

41

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

MPI-IO Takeaway

• Sometimes it makes sense to build a custom library that uses MPI-IO (or maybe
even MPI + POSIX) to write a custom format

– e.g., a data format for your domain already exists, need parallel API

• We’ve only touched on the API here

– There is support for data that is noncontiguous in file and memory

– There are independent calls that allow processes to operate without coordination

• In general we suggest using data model libraries
– They do more for you

– Performance can be competitive

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

42

materials: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

MPI-IO References

• On Cray systems, “man intro_mpi” for 3,000 lines of
tuning parameters, debug configuration

• Using Advanced MPI, Gropp, Hoeffler, Thakur, Lusk

– Chapter on MPI I/O routines covers entire API as well as
consistency semantics

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

